Вариант № 43155

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 1124
i

На ко­ор­ди­нат­ной пря­мой от­ме­че­ны точки А, В, С, D, E. Если рас­сто­я­ние между A и С равно  дробь: чис­ли­тель: 4, зна­ме­на­тель: 7 конец дроби , то ближе дру­гих к точке с ко­ор­ди­на­той 0,5 рас­по­ло­же­на точка:



2
Задание № 92
i

Пусть O и O1  — цен­тры ос­но­ва­ний ци­лин­дра, изоб­ра­жен­но­го на ри­сун­ке. Тогда об­ра­зу­ю­щей ци­лин­дра яв­ля­ет­ся от­ре­зок:



3
Задание № 243
i

Ис­поль­зуя ри­су­нок, опре­де­ли­те вер­ное утвер­жде­ние и ука­жи­те его номер.



4
Задание № 1301
i

Най­ди­те гра­дус­ную меру угла, смеж­но­го с углом, ра­ди­ан­ная мера ко­то­ро­го равна  дробь: чис­ли­тель: 11 Пи , зна­ме­на­тель: 15 конец дроби



5
Задание № 5
i

Из точки А к окруж­но­сти про­ве­де­ны ка­са­тель­ные AB и АС и се­ку­щая AM, про­хо­дя­щая через центр окруж­но­сти О. Точки В, С, M лежат на окруж­но­сти (см. рис.). Най­ди­те ве­ли­чи­ну угла AOB, если \angle CAO = 25 гра­ду­сов.



6
Задание № 1129
i

На ри­сун­ке при­ве­ден гра­фик из­ме­не­ния ско­ро­сти тела в за­ви­си­мо­сти от вре­ме­ни. За­пи­ши­те закон дви­же­ния тела на про­ме­жут­ке от 80 мин до 120 мин.



7
Задание № 1034
i

Зна­че­ние вы­ра­же­ния 7 ко­си­нус в квад­ра­те 34 гра­ду­сов плюс 10 синус 30 гра­ду­сов плюс 7 синус в квад­ра­те 34 гра­ду­сов равно:



8
Задание № 1305
i

Через точку А к окруж­но­сти с цен­тром в точке О про­ве­де­ны ка­са­тель­ные АВ и АС, где В и С  — точки ка­са­ния. Най­ди­те гра­дус­ную меру угла ВАС, если \angle OBC = 33 гра­ду­сов.



9
Задание № 99
i

Одна из сто­рон пря­мо­уголь­ни­ка на 7 см длин­нее дру­гой, а его пло­щадь равна 78 см2. Урав­не­ние, одним из кор­ней ко­то­ро­го яв­ля­ет­ся длина мень­шей сто­ро­ны пря­мо­уголь­ни­ка, имеет вид:



10
Задание № 190
i

Из точки A к окруж­но­сти про­ве­де­ны ка­са­тель­ные AB и AC и се­ку­щая AM, про­хо­дя­щая через центр окруж­но­сти O. Точки B, С, M лежат на окруж­но­сти (см. рис.). Из­вест­но, что BK  =  4, AC  =  9. Най­ди­те длину от­рез­ка AK.



11
Задание № 101
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 11 ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс 5 ко­рень из 5 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та плюс ко­рень из 5 конец дроби минус ко­рень из: на­ча­ло ар­гу­мен­та: 55 конец ар­гу­мен­та плюс дробь: чис­ли­тель: 12 ко­рень из 5 , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 11 конец ар­гу­мен­та минус ко­рень из 5 конец дроби



12
Задание № 1309
i

В тре­уголь­ни­ке ABC \angle ACB = 90 гра­ду­сов, AB=8, \ctg \angle BAC = ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та . Най­ди­те длину сто­ро­ны CB.



13
Задание № 1598
i

В окруж­но­сти ра­ди­у­са 13 про­ве­де­на хорда АВ. Точка М делит хорду на от­рез­ки дли­ной 10 и 12. Най­ди­те рас­сто­я­ние от точки М до цен­тра окруж­но­сти.



14

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: 125 в сте­пе­ни x плюс 25 в сте­пе­ни x минус 12 умно­жить на 5 в сте­пе­ни x , зна­ме­на­тель: 5 в сте­пе­ни x левая круг­лая скоб­ка 5 в сте­пе­ни x минус 3 пра­вая круг­лая скоб­ка конец дроби .



15

Ука­жи­те но­ме­ра пар не­ра­венств, ко­то­рые яв­ля­ют­ся рав­но­силь­ны­ми.

1) (x − 14)2 < 0 и x − x2 − 14 ≥ 0;

2) x2 − 169 > 0 и |x| < 13;

3) x2 + x − 30 < 0 и (x − 5)(x + 6) < 0;

4) x2 ≥ 31 и x боль­ше или равно ко­рень из: на­ча­ло ар­гу­мен­та: 31 конец ар­гу­мен­та ;

5) 5x2 < 9x и 5x < 9.



16
Задание № 1601
i

На одной сто­ро­не пря­мо­го угла О от­ме­че­ны две точки А и В так, что ОА  =  1,7, OB  =  а, ОА < ОВ. Со­ставь­те фор­му­лу, по ко­то­рой можно вы­чис­лить ра­ди­ус r окруж­но­сти, про­хо­дя­щей через точки А, В и ка­са­ю­щей­ся дру­гой сто­ро­ны угла.



17
Задание № 17
i

Упро­сти­те вы­ра­же­ние  дробь: чис­ли­тель: ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 3 Пи , зна­ме­на­тель: 2 конец дроби минус t пра­вая круг­лая скоб­ка умно­жить на синус левая круг­лая скоб­ка t минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка , зна­ме­на­тель: синус левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 2 конец дроби плюс t пра­вая круг­лая скоб­ка умно­жить на ко­си­нус левая круг­лая скоб­ка 5 Пи минус t пра­вая круг­лая скоб­ка конец дроби



18
Задание № 1777
i

SABCD  — пра­виль­ная че­ты­рех­уголь­ная пи­ра­ми­да, все ребра ко­то­рой равны 48. Точка M  — се­ре­ди­на ребра SD. Точка N при­над­ле­жит SC, СN : NS  =  1 : 3 (см. рис.). Най­ди­те длину от­рез­ка, по ко­то­ро­му плос­кость, про­хо­дя­щая через точки M и N па­рал­лель­но ребру SA, пе­ре­се­ка­ет ос­но­ва­ние ABCD пи­ра­ми­ды.



19
Задание № 259
i

Для по­крас­ки стен общей пло­ща­дью 175 м2 пла­ни­ру­ет­ся за­куп­ка крас­ки. Объем и сто­и­мость банок с крас­кой при­ве­де­ны в таб­ли­це.

 

Объем банки

(в лит­рах)

Сто­и­мость банки с крас­кой

(в руб­лях)

2,575 000
10270 000

 

Какую ми­ни­маль­ную сумму (в руб­лях) по­тра­тят на по­куп­ку не­об­хо­ди­мо­го ко­ли­че­ства крас­ки, если ее рас­ход со­став­ля­ет 0,2 л/м2?


Ответ:

20

Для на­ча­ла каж­до­го из пред­ло­же­ний А  — В под­бе­ри­те его окон­ча­ние 1  — 6 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

 

На­ча­ло пред­ло­же­ния Окон­ча­ние пред­ло­же­ния

А)  Зна­че­ние вы­ра­же­ния 5 синус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби плюс 5 ко­си­нус в квад­ра­те дробь: чис­ли­тель: 13 Пи , зна­ме­на­тель: 12 конец дроби равно ...

Б)  Зна­че­ние вы­ра­же­ния 10 ко­си­нус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби синус дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 12 конец дроби равно ...

В)  Зна­че­ние вы­ра­же­ния 8 синус в квад­ра­те дробь: чис­ли­тель: Пи , зна­ме­на­тель: 12 конец дроби минус 4 равно ...

1)  4 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та

2)  4 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

3)   минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

4)  2,5

5)  4 плюс 2 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та

6)  5

 

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

21
Задание № 1048
i

Из­вест­но, что при a, рав­ном −2 и 4, зна­че­ние вы­ра­же­ния 4a в кубе плюс 3a в квад­ра­те минус ab плюс c равно нулю. Най­ди­те зна­че­ние вы­ра­же­ния b + с.


Ответ:

22
Задание № 1145
i

Най­ди­те про­из­ве­де­ние кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3x в квад­ра­те плюс x плюс 2 конец ар­гу­мен­та =3x минус 2.


Ответ:

23
Задание № 263
i

Най­ди­те зна­че­ние вы­ра­же­ния 2 умно­жить на левая круг­лая скоб­ка ко­рень 3 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 ко­рень из 5 конец ар­гу­мен­та минус ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 36 ко­рень из 6 конец ар­гу­мен­та пра­вая круг­лая скоб­ка : левая круг­лая скоб­ка ко­рень из 5 плюс ко­рень из 6 пра­вая круг­лая скоб­ка минус 4 ко­рень из: на­ча­ло ар­гу­мен­та: 30 конец ар­гу­мен­та .


Ответ:

24
Задание № 1609
i

Точки N и М лежат на сто­ро­нах АВ и AD па­рал­ле­ло­грам­ма ABCD так, что AN : NB  =  1 : 2, AM : MD  =  1 : 2. Пло­щадь тре­уголь­ни­ка CMN равна 45. Най­ди­те пло­щадь па­рал­ле­ло­грам­ма ABCD.


Ответ:

25
Задание № 1784
i

Ре­ши­те урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та ко­си­нус левая круг­лая скоб­ка дробь: чис­ли­тель: 5 Пи , зна­ме­на­тель: 18 конец дроби плюс Пи x пра­вая круг­лая скоб­ка = минус 1,5. В ответ за­пи­ши­те уве­ли­чен­ное в 3 раза про­из­ве­де­ние наи­боль­ше­го корня (в ра­ди­а­нах) на ко­ли­че­ство кор­ней этого урав­не­ния на про­ме­жут­ке [3; 9].


Ответ:

26

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0. левая круг­лая скоб­ка 1 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка дробь: чис­ли­тель: 1, зна­ме­на­тель: 9 конец дроби пра­вая круг­лая скоб­ка дробь: чис­ли­тель: 1 минус x, зна­ме­на­тель: x минус 10 конец дроби \geqslant0.


Ответ:

27

Най­ди­те уве­ли­чен­ную в 3 раза сумму квад­ра­тов кор­ней урав­не­ния  ко­рень 5 сте­пе­ни из: на­ча­ло ар­гу­мен­та: 5 в сте­пе­ни левая круг­лая скоб­ка 2x в квад­ра­те плюс 3x минус 5 конец ар­гу­мен­та пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: 6 минус 2 ко­рень из: на­ча­ло ар­гу­мен­та: 5 конец ар­гу­мен­та конец ар­гу­мен­та плюс 1 пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка 2x пра­вая круг­лая скоб­ка =0.


Ответ:

28
Задание № 238
i

В пря­мо­уголь­ни­ке ABCD вы­бра­ны точки L на сто­ро­не BC и M на сто­ро­не AD так, что ALCM  — ромб. Най­ди­те пло­щадь этого ромба, если AB  =  3, BC  =  9.


Ответ:

29
Задание № 1682
i

По пря­мым па­рал­лель­ным путям рав­но­мер­но в про­ти­во­по­лож­ных на­прав­ле­ни­ях дви­жут­ся два по­ез­да: по пер­во­му пути  — ско­рый поезд со ско­ро­стью 108 км/ч, по вто­ро­му  — пас­са­жир­ский со ско­ро­стью 68,4 км/ч. По одну сто­ро­ну от путей на рас­сто­я­нии 100 м от пер­во­го пути и 20 м от вто­ро­го рас­тет де­ре­во. Если пре­не­бречь ши­ри­ной пути, то в те­че­ние сколь­ких се­кунд t пас­са­жир­ский поезд, име­ю­щий длину 165 м, будет за­го­ра­жи­вать де­ре­во от пас­са­жи­ра ско­ро­го по­ез­да? В ответ за­пи­ши­те зна­че­ние вы­ра­же­ния 15t.


Ответ:

30

Объем пра­виль­ной тре­уголь­ной пи­ра­ми­ды SABC равен 13. Через сто­ро­ну ос­но­ва­ния ВС про­ве­де­но се­че­ние, де­ля­щее по­по­лам дву­гран­ный угол SBCA и пе­ре­се­ка­ю­щее бо­ко­вое ребро SA в точке М. Объем пи­ра­ми­ды МАВС равен 6. Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: 8, зна­ме­на­тель: ко­си­нус альфа конец дроби , где  альфа   — угол между плос­ко­стью ос­но­ва­ния и плос­ко­стью бо­ко­вой грани пи­ра­ми­ды SABC.


Ответ:

31
Задание № 1790
i

Петя за­пи­сал на доске два раз­лич­ных на­ту­раль­ных числа. Затем он их сло­жил, пе­ре­мно­жил, вычел из боль­ше­го за­пи­сан­но­го числа мень­шее и раз­де­лил боль­шее на мень­шее. Сло­жив че­ты­ре по­лу­чен­ных ре­зуль­та­та, Петя по­лу­чил число 1521. Най­ди­те все такие пары на­ту­раль­ных чисел. В ответ за­пи­ши­те их сумму.


Ответ:

32
Задание № 1791
i

Ос­но­ва­ни­ем пи­ра­ми­ды SABCD яв­ля­ет­ся вы­пук­лый че­ты­рех­уголь­ник ABCD, диа­го­на­ли АС и BD ко­то­ро­го пер­пен­ди­ку­ляр­ны и пе­ре­се­ка­ют­ся в точке O, АО  =  9, ОС  =  16, ВО  =  OD  =  12. Вер­ши­на S пи­ра­ми­ды SABCD уда­ле­на на рас­сто­я­ние  дробь: чис­ли­тель: 61, зна­ме­на­тель: 7 конец дроби от каж­дой из пря­мых AB, BC, СD и AD. Через се­ре­ди­ну вы­со­ты пи­ра­ми­ды SABCD па­рал­лель­но ее ос­но­ва­нию про­ве­де­на се­ку­щая плос­кость, ко­то­рая делит пи­ра­ми­ду на две части. Най­ди­те зна­че­ние вы­ра­же­ния 10 · V, где V  — объем боль­шей из ча­стей.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.